10 research outputs found

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species

    Get PDF
    Despite increasing awareness of global biodiversity loss, we lack quantitative data on local extinctions for many species. This is especially true for rare species, which are typically assessed on the basis of expert judgment rather than data. Revisiting previously assessed populations enables estimation of local extinction rates and the identification of species characteristics and habitats with high local extinction risk. Between 2010 and 2016, in a nationwide revisitation study, 420 volunteer botanists revisited 8,024 populations of the 713 rarest and most threatened plant species in Switzerland recorded between 1960 and 2001. Of the revisited 8,024 populations, 27% had gone locally extinct. Among critically endangered species, the local extinctions increased to 40%. Species from ruderal and freshwater habitat types showed the highest proportion of local extinctions. Our results provide compelling evidence for rapid and widespread local extinctions and suggest that current conservation measures are insufficient. Local extinctions precede and provide early warnings for global extinctions. The ongoing loss of populations suggests that we will lose species diversity unless we scale up species‐targeted conservation and restoration measures, especially in anthropogenic landscapes

    Conservation and restoration of Nardus grasslands in the Swiss northern Alps

    Get PDF
    Aim: Species‐rich Nardus grasslands are high nature‐value habitats. In Switzerland, many of these grasslands are degraded even though they have been under protection since the 1980s. Degradation shows two divergent trends: Nardus grasslands are either dominated by Nardus stricta or by eutrophic plants, both trends leading to the disappearance of typical Nardus grassland species. With this study, we aim to identify the factors that could be adjusted to conserve the integrity of this habitat. Location: Bernese Alps, Switzerland. Methods: In 2016, we investigated the underlying causes of this degradation process by assessing vegetation composition in 48 Nardus grasslands located in the Swiss northern Alps of canton Bern and linking it to soil, management and environmental variables. To explore the effect of the degradation on higher trophic levels, orthopteran species richness and densities were assessed. Results: Results show that Nardus meadows (mown) are rarely degraded compared to Nardus pastures (grazed). Within pastures, eutrophic plants are most abundant on small pastures with low soil carbon/nitrogen ratio, indicating high nutrient availability. Nardus stricta dominance is most problematic on north‐exposed slopes and in summer pastures. A plausible driver of both degradation trends is the grazing management regime: within small pastures at low elevation where the grazing periods are short but intense, soil carbon/nitrogen ratio is low because of high dung deposition, thus the eutrophic species become dominant. Contrastingly, on large summer pastures with low‐intensity and long‐term grazing, N. stricta becomes dominant due to selective grazing. Both degradation trends show a negative impact on the orthopteran density. Conclusion: Species‐rich Nardus grasslands are a precious alpine habitat for specialised plant species and orthopterans. With an extensive mowing regime or a more controlled grazing regime that homogenises intensity in time and space, species‐rich Nardus grasslands can be conserved in Switzerland
    corecore